Binge Drinking During Adolescence Disrupts Se Homeostasis and Its Main Hepatic Selenoprotein Expression
Article first published online: 10 APR 2015
DOI: 10.1111/acer.12707
Keywords:
- Adolescence;
- Binge Drinking;
- GPx Activity;
- Liver;
- NF-κB;
- Selenoproteins
Background
Binge drinking (BD) is the most common ethanol (EtOH) intake consumption model among teenagers, but little is known about its effects on the liver. During its hepatic metabolism, acute alcohol exposure produces a great amount of reactive oxygen species which contributes to alcohol-induced liver injury. Selenium (Se) plays a key role in antioxidant defense as it forms part of selenoproteins, such as the antioxidant glutathione peroxidases (GPxs) or the selenoprotein P (SelP), synthesized mainly in liver. Chronic EtOH consumption decreases both Se deposits and this tissue’s antioxidant activity.
Methods
Two BD administration routes (oral and intraperitoneal) were used in adolescent rats to analyze Se homeostasis; the main hepatic selenoproteins’ expression: GPx1, GPx4, and SelP, and their biological roles related to oxidation. Their relationship with inflammatory processes was also determined by analyzing the expression of the transcriptional factor nuclear factor-kappa beta (NF-κB).
Results
It has been demonstrated for the first time that BD in adolescents alters Se homeostasis regardless of the administration route employed, despite the fact that the BD oral group ingested less Se in diet. This decrease of Se in serum and liver is directly related to a decrease in serum GPx3 and hepatic GPx1 activity, contributing to the oxidative imbalance found. The depletion of Se detected in liver affects GPx1 expression and, surprisingly, GPx4 expression. This could be related to the lower expression of the transcriptional factor NF-κB in the liver, a key player in the regulation of inflammatory processes.
Conclusions
Due to the above, and to find whether a Se supplementation therapy improves these situations, it would be interesting to explore in more depth the relationship between Se, the high oxidation found, and the depressed immune response reported in BD adolescents.